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We present a simple computational method to connect the computedab initio values of static dipole
polarizabilities and hyperpolarizabilities of molecules in solution with their experimental counterparts. The
connection is done in terms of local field factors. We show that formulas used by experimentalists are not
adequate, and that they can be replaced by a reformulation of the quantum-mechanical codes for the calculation
of (hyper)polarizabilities in solution by using a realistic description of the solvent reaction field (i.e., a cavity
with the proper molecular shape). This reformulation leads to an additional set of hyperpolarizability values
which take into account local modifications to the external static field. This second set of values has a direct
relation with the macroscopic susceptibility tensors and, when compared to that derived from standard
calculations, allows one to evaluate realistic local field factors.

1. Introduction

The large amount of literature on the ab initio calculation of
static dipole polarizability and hyperpolarizabilities of molecules
is mainly based on procedures applied to the evaluation of the
response functions of the single molecule when subjected to an
external static electric field in the limit of a weak polarization.
In the latter approximation, the dipolar interaction with the
radiation field can be described as an expansion on the external
electric field components. There are two equivalent definitions,
based either on the Stark energy or on the dipole moment, which
is the negative derivative of the energy with respect to the field.
In the following we shall adopt the latter one.
Still within this assumption, in the literature one can find

different conventions used to define hyperpolarizabilities, mak-
ing it difficult to compare calculated and experimental values
or experimental values obtained using different techniques; a
very clear analysis of these practical aspects can be found in a
paper by Willetts et al.1. Generally, the two most used
conventions are those based on a perturbation series expansion
of the induced dipole moment or on the parallel Taylor series
expansion:

whereµb0 is the molecular permanent dipole andγ(n) are the
microscopic (hyper)polarizability tensors at the various orders;
in eq 2 we have preferred to make explicit the contracted matrix

formalism of eq 1 in terms of the Cartesian componentsa, b, c,
.... The relation between the two sets of coefficients is
immediate: the hyperpolarizabilities defined in the two conven-
tions are simply related by factors of (n!).
The coefficientγ(1) (more often indicated asr) is the dipole

polarizability tensor of the molecule and is related to the second
derivative of the energy and first derivative of the dipole moment
with respect to the fieldEB. The polarizability term describes
the linear interaction with the field and accounts for linear
absorption and refraction behavior of the molecule. The
coefficientsγ(2) andγ(3) (more often indicated asâ andγ), being
third- and fourth-rank tensors, respectively, are called first and
second hyperpolarizabilities and constitute the molecular origin
of the nonlinear interactions.
What was reported until now regards microscopic molecular

properties in vacuo; anyway, in the last few years there has
been a remarkable progress in ab initio calculations of the same
properties in solution.2-9 The latter can be still defined in terms
of an expansion of the dipolar moment (or of the free energy
of the molecule in solution) with respect to a uniform field
exactly in the same way as in vacuo (see eqs 1 and 2). The
elaboration of methods able to compute microscopic (hyper)-
polarizabilities in solution has led to a more reliable comparison
with respect to the experimental measurements usually per-
formed on macroscopic samples (i.e., condensed phases).
Actually, these data give information on the corresponding
susceptibility tensorsø(n) defined as the expansion coefficient
of the polarizationPB in terms of the macroscopic uniform
external fieldEB:

Usually, the macroscopic polarizationPB is found by summing
over the dipole moments per unit volume, where the latter are
calculated with the aid of the expansions 1 or 2; this clearly
leads to an erroneous valuation as, whilePB is defined in terms
of the external macroscopic field, each molecular dipole moment
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depends on the components of the local field acting on the single
molecule. Clearly, in rarefied media such as gases, the
differences between the two fields are so small to be safely
neglected. On the contrary, the corrections to be taken into
account in the case of molecules in condensed matter are by
far larger, and they may have a significant effect on the
comparison of experimentally determined coefficients with those
obtained from microscopic theories. In order to extract the
expressions for the macroscopic susceptibilities from those of
the microscopic hyperpolarizabilities, or vice versa, the relation
between local and macroscopic fields must be defined. In
determining the local field one must, in general, take into
account the depolarizing field acting on any particular molecule
due to the influence of the surrounding molecules.
The local field problem, even for a dielectric with an idealized

linear response, is quite difficult. It has received the attention
of the theoreticians over many decades, although this has yielded
practical results in only a few simple cases.13 Before sum-
marizing them shortly, we recall that in the already introduced
dipole approximation (i.e., the molecules are assumed to interact
through the dipolar field of the induced dipole) the field acting
locally at the site of the single molecule can be written as

where f is a 3× 3 tensor whose components are known as
“local-field factors”.
The classical approach to the problem was established over

80 years ago by Lorentz.10 He showed that for atoms or
nonpolar molecules with well-localized bound electrons the local
field tensor may be replaced by a scalar quantityfL (i.e.,

whereε is the dielectric constant of the medium).
The validity of this approach rests on the hypothesis that the

polarization within the dense medium is uniform; it is found
that the value obtained depends, not on the size of the cavity
embedding the molecule in the dielectric, but on its shape; the
case considered by Lorentz is limited to the spherical symmetry.
So far in this discussion of local fields we have considered

only induced dipoles; however, external fields, especially static
fields, can also orient molecules with permanent electric-dipole
moments. A refinement to the Lorentz model, taking into
account the orientational reactive forces among molecules, is
due to Onsager.11 These forces can be represented as reaction
fields. The reaction field acting on a molecule depends on the
dipole of the molecule itself and therefore cannot contribute to
its own orientation. Onsager showed that the local-field tensor
which appears in eq 4 can be approximated, for a polar liquid,
by the scalar

whereε∞ denotes a value of the dielectric constant obtained by
extrapolating the results of electrical measurements to high
frequencies.
Both eqs 5 and 6 are the usual corrections exploited to relate

gas-phase computations and solution-phase measurements; in
particular for static (or dc) electric field the local field factor is
often given by the Onsager expression.

In order to derive more refined considerations, which will
be important in the following analysis, further details are here
required.
The Onsager equation (eq 6) is derived in the case of a polar

liquid with molecules of spherical shape; in this framework the
global effect of the external field can be seen as a sum of two
contributions: the first due to the electronic polarization and
the second due to the orientation of the permanent dipole. Thus
if one wants to derive the proper correction factor to be applied
to quantities calculated through solvation models which already
take into account the electronic polarization effects of the solvent
molecules (and this is the case of the method exploited in the
present paper), the model described above has to be partially
changed. In this framework, the local field correction has to
be evaluated by considering the field inside the empty spherical
cavity when subject to a homogeneous external field (often this
contribution is called the “cavity field” and it can also be defined
as the reaction field induced by a nonpolarizable dipole at the
center of the sphere). In this case, eq 6 reduces to

The same model can be easily generalized to a molecule with
an ellipsoidal shape.12 By choosing a Cartesian coordinate
system with its axes in the direction of the principal axes 2a,
2b, and 2c of the ellipsoid and defining a diagonal tensorA
with components:

andR ) (s + a2)(s + b2)(s + c2), we can express the local
field factor express by a diagonal tensor as follows:

When the ellipsoid degenerates into a sphere, we havea) b)
c and therefore all componentsAR have the value1/3 and the
tensor of eq 9 reduces to the scalarfO

sp of eq 7.
Having thus described the two main theoretical approaches

used to solve the local-yield problem, we may go back to the
connection between microscopic and macroscopic formulas. As
a preliminary step, it is compulsory to define the assumed
convention. In the present work we have exploited the
perturbation series expansion (eq 3) to define the polarization
in the experimental measurements, while the theoretical calcula-
tions, described in detail in the following sections, are based
on a Taylor series expansion of the induced dipole moment (eq
2); by adopting this convention the comparison between
measurements and calculation is defined by the following recipe:

whereN is the number of target molecules per unit volume and
γ(n) is the related microscopic hyperpolarizability tensors at the
various orders. In the case of a static external field, the product
reduces ton static local field tensors.
As already stressed, the definition of the proper local field

correction is a difficult one, and at least for a general shaped
molecule it has not been analytically resolved; however, in most
of the papers focussed on the study of electric response functions
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of molecules in solution use is made of approximate analogs
of the relations 10, in which the tensorsfk are reduced to scalar
quantities and replaced by the Lorentz or Onsager model-derived
factors despite the lack of spherical symmetry in the shape of
the target molecule. As the related correction factors are of
not negligible entity (suffice it to say that for water as solvent
the Onsager factorfO

sp of eq 7 is about 1.5), in some cases this
procedure can lead to completely wrong comparisons with
experimental data.
In the next section we present a numerical procedure which

allows the direct calculation of the static local field tensors for
any kind of molecule with the aid of QM calculations performed
with the polarizable continuum model (PCM)14-16 in which a
cavity modelled on the real shape of the molecule is exploited.

2. Method

In the PCM method, the electrostatic problem of the evalu-
ation of the interaction energy between solute and solvent,
including also mutual polarization effects, is solved by introduc-
ing an apparent charge distributionσ spread on the cavity surface
(ASC approximation).15 In the computational practice this
continuous distribution is discretized by point charges{qi}, each
associated with a small portion (tessera) of the cavity surface,
and defined through a set of linear equations. In the following
we report a general matrix formulation which applies to all the
different versions of the PCM method now in use (namely, the
standard one presented in ref 16 but also a very recent one,
called IEF, whose first presentation can be found in ref 17. Here
it is worth stressing that a complete generalization with respect
to the still limited version presented in this source paper has
already been obtained, see ref 18 for details). In this general
framework the expression to be used is

HereΣ is a diagonal square matrix with elements given by the
areas of the surface tesserae andpM a column vector depending
on the solute charge distributionFM. O is a nonsymmetric
square matrix with dimension equal to the number of tesserae,
whose elements depend on geometrical cavity parameters and
on the dielectric constant; in a quite rough way we can say that
it takes into account the effects that the response (both in terms
of the reaction electrostatic field and the reaction potential) of
the solvent induces on itself.
The procedure for the calculation of solute energy and

wavefunction with the PCMmethod has been reported in several
papers, and we skip here all the details. Suffice it to say that,
in order to get solvation quantities, one has to resort to a direct
minimization of the functional of the free energyG of the whole
solute-solvent system. For a closed-shell solute, described by
an SCF wave function with orbitals expanded over a finite basis
set, the variational conditionδG ) 0 leads to the following
equation:

where

here the tilde stresses that the related matrices contain terms
accounting for the presence of the solvent field.
The matricesh andG(P) collect the usual one- and two-

electron integrals over the basis set used for theVacuumSCF
calculation, whileP is the one-electron density matrix; the

matrices j , y, and X(P) collect the one- and two-electron
integrals to be added when the interactions with the polarized
dielectric medium are explicitly taken into account within the
PCM framework. More details on these matrices can be found
elsewhere.16

Recently a PCM implementation allowing the computation
of (hyper)polarizabilities both in the static8 and frequency
dependent9 cases has been done; in this framework, use is made
of the coupled perturbed Hartree-Fock (CPHF) and time-
dependent coupled Hartree-Fock (TDCHF) formulations, re-
spectively.19,20 The formal aspects of the implementation can
be found in the already quoted source papers.8,9 Here it is
sufficient to recall that, when an external static fieldEB is applied,
a further monoelectronic term has to be introduced in the Fock
operator of eq 13:

wherema collects the integrals of theath Cartesian component
of the dipole moment operator.
By expandingF, C, ε, andP in terms of the external electric

field components one gets expansions as a function of the
magnitude and direction of the field; then substituting the latter
in eq 12 and equating coefficients of same exponential terms
on both sides leads to various CPHF equations in different
orders; for example, for the first order one obtains:

with:

It is immediate to see that from eq 15 and from the higher order
analogs, one can derive the density matrix derivatives and hence
the various (hyper)polarizabilities tensor components by

wheren + 1 is the rank of the tensor andax the Cartesian
coordinates specifying its components.
The procedure briefly described above does not take into

account the differences between the macroscopic external field
and the local one really acting on the molecule; anyway the
way to be followed to go beyond this first approximation is
quite easy and physically well understandable.
Let us consider an empty cavity with shape adapted to the

hypothetical molecular solute to be studied immersed in a
continuum dielectric with permittivityε, and switch on an
external uniform fieldEBex. As already said, the immediate
effects of this field are to induce a polarization of the solvent
molecules so that to produce a reaction field inside the cavity.
In the ASC framework exploited by PCM, this field is easily
described in terms of an apparent surface chargeσex (or
equivalently of a set of point charges{qi

ex} placed on the
previously defined surface tesserae), and simple electrostatic
considerations of the same type of those leading to eq 11 yield
to the following equation:

where En
ex is the matrix collecting the components of the

external field perpendicular to the cavity surface, computed at
each tesserai. The matrixD, tightly related to the generalO

q ) Σσ ) - ΣO-1pM (11)

F̃C ) SCE (12)

F̃ ) h + 1/2(j + y) + G(P) + X(P) ) h̃ + G̃(P) (13)

h̃ ) h + ∑
a

maE
a + 1/2(j + y) (14)

F̃aC0 + F̃0Ca ) SCaε0 + SC0εa (15)

F̃a ) ma + G̃(Pa) (16)

γa1a2, ...,an+1

(n) ) -Tr[ma1
Pa2, ..., an+1] (17)

qex ) -ΣD-1En
ex (18)
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matrix of eq 11, collects the effects of the reaction field the
induced charges produce on themselves.
When the molecular solute is put inside the cavity the total

solvent effects to be considered in order to derive its response
functions can be thus represented by a set of effective point
charges{qi

eff} given by the sum of two contributions, namely
the “solute field” and the “external field” induced charges,{qi}
(see eq 11) and{qi

ex} (see eq 18), respectively. This is
reflected in the definition of the monoelectronic matrixh̃ of eq
14 in which a further term,hex, has to be added:

where the fieldEBex is now the external macroscopic one. The
matrix m̃a is derived from the interaction energy between the
“external field” induced charges and the solute electronic charge:

where the matrixV collects the potential integrals over the basis
set computed at each tesserai.
As we already said, in the CPHF formalism, the various

Hartree-Fock equations to be solved to get the density matrix
derivatives (and then the hyperpolarizability tensor via eq 22)
are obtained by considering the derivatives of eq 12 with respect
to the field. It is easy to see that the new termhex, being linear
in the field, explicitly acts at the first order only, as a constant
contribution to be inserted in eq 21; namely,

At zero order it disappears, being the related equation obtained
in the limit of zero external field. By applying the same
procedures indicated above one derives the new set of density
matrix derivativesPa1a2...(hex) from which new (hyper)polariz-
abilities are easily computed:

Within this framework it is immediate to derive the local effects
acting on the macroscopic external field and the related local
field tensor f; namely, it is sufficient to consider the ratio
between the various component of the polarizability tensors
obtained by solving the first CPHF equations in which the
further constant termhex is, or is not, explicitly introduced in
the Fock matrix, respectively,

The relation 23 can be easily extended to higher order
hyperpolarizability tensors, at least for the diagonal terms;
namely, we have

3. Numerical Results and Discussion

The results here reported and analyzed regard static (hyper)-
polarizabilitiesR, â, andγ of various molecules (H2 CO, CH3

COH, CH3 CH2 COH, C(CH3 )3 COH, CH2 C2 O, and CH2 C3

O) in water (ε)78.5 ) at 298 K.
All the calculations have been performed using the already

quoted IEF version of the PCM method17,18and a 6-31G basis
set. Clearly, this quite limited basis set gives a very poor
description of the various response functions, as they are
quantities which require extended basis sets including polariza-
tion and diffuse functions. However, as the scope of the present
paper is not the evaluation of the best (hyper)polarizability
values but the analysis of relative quantities obtained as ratios
of values computed at the same level of approximation, the
absolute quality of the calculation is at least a second-order
effect, not important in the analysis below.
Within the PCM framework, the cavity in the dielectric

medium which contains the molecular solute is defined in terms
of interlocking spheres centered on the solute nuclei, with radii
Rk equal to 1.2 times the corresponding van der Waals21 values
Rk

Vdw; namely, for our solutes we haveRH ) 1.44 Å,RC ) 2.04
Å, andRO ) 1.80 Å. Moreover, in order to test the reliability
of the method through a direct comparison with analytical
formulas of the local field factors, we have repeated the
calculations with simplified cavities: for the first group of
solutes (H2CO, CH3COH, CH3CH2 COH, and C(CH3)3COH)
we have exploited a single sphere centered on the mass center
of the molecule and with radius such that to give the same
volume of the molecular cavity, while for CH2C2O a three-
sphere cavity with the spheres of radius 2.4 Å centered on the
carbon and the oxygen atoms, and for CH2C3O, the analog four-
sphere cavity. The latter two cavities are quite good representa-
tions of an elliptical cavity for which the expression 9 can be
applied.
In Table 1 we report, for the first group of molecules, the

diagonal values of each static (hyper)polarizability tensor (in
au) corresponding to the Cartesian component with the largest
value of the polarizability tensor as obtained by exploiting a
spherical and a molecular shaped cavity, respectively.
The results of Table 1 are here reported not as reliable

absolute values, but as a clear demonstration of the importance
of the choice of the proper cavity shape. Numerical data in
fact show that the exploitation of a cavity well modelled on the
shape of the molecule leads to important differences with respect
to the use of a simplified cavity; namely, the largest variations
are of the order of 10% inR, of 27% inâ, and of 37% inγ. In
Table 2 we report the local field factors of the same molecules
and the same conditions used in Table 1 as obtained from eqs
23 and 24. For a comparison with analytical values we recall
that the Onsager formula of eq 7 givesfO

sp) 1.490 forε ) 78.5.
From the data in Table 2 several interesting features can be

derived. First, it is evident that also in the case of spherical
cavities the computed values deviate from the theoretical one
(i.e., f ) 1.490). This behavior can be easily explained if one
considers that the spherical cavity reproducing the molecular
volume can induce important border effects on those atoms

TABLE 1: Diagonal Values of Static Polarizability and
Hyperpolarizability Tensors Corresponding to the Cartesian
Componentaa with the Largest Value of Polarizability

Raa âaaa γaaaa

cavity sphere mol cavb sphere mol cav sphere mol cav

H2CO 23.04 21.62 97.86 76.96 201.13 200.32
CH3COH 34.73 33.35 140.90 133.62 621.50 717.84
CH3CH2COH 49.10 45.47 75.40 89.92 1839.65 1334.94
C(CH3 )3COH 60.49 60.73 146.30 145.29 3980.89 4154.57

a Tensors in au.bMol cav ) molecular-shaped cavity.

hex ) ∑
a

m̃aEa
ex (19)

m̃a ) -∑
i

V i
∂qi

ex

∂Ea
ex

(20)

F̃a ) ma + m̃a + G̃[Pa(hex)] (21)

γa1a2,...,an+1
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which are very close to the surface where the local field is
strongly nonuniform; the bigger these effects the larger is the
difference with respect to the theoretical value obtained sup-
posing a completely uniform field inside the whole cavity. These
discrepancies are easily reduced by enlarging the sphere; for
the specific molecules listed in Table 2 it is sufficient to double
the radius derived from the molecular volume to obtain values
exactly equivalent to the theoretical one. The same border
effects are also reflected in the differences among values
obtained from the ratio of different order hyperpolarizabilities
(see eq 24); better showing this point is worth a brief digression.
As the theoretical framework described in the previous section

shows, the local field effects explicitly act at the first CPHF
order only (through the presence of hex in the first derivative of
the Fock matrix) but indirectly they change the results at all
the higher orders. Thus, being the solutions of the CPHF
equations generally not exact, the magnitude of the inherent
error is related to the order, the effects due to an eventual
nonuniform shape of the local field will be differently reflected
on the resultingR, â, or γ values, and indirectly on the local
field factors derived by them. Also, small differences in the
values of the factors computed from different hyperpolarizability
ratios indicate small border effects. An evident proof of this
statement is given by C(CH3 )3 COH; here both the deviations
of the computed factor with respect to the theoretical value and
the differences among the three local field factors are almost
negligible, and as a matter of fact a sufficiently uniform behavior
of the external field inside the cavity has been numerically
found.
Now that we have stressed this technical but not minor aspect,

we consider the effects of a molecular cavity with general shape.
First it is worth noting that, while in the case of the sphere

the deviations of the computed values from the theory are always
in the direction of a smaller local field with respect to the
Onsager value, here the effects can go in both the directions.
This more complex behavior is obviously related to the tensorial
nature of the local field factors to be always taken into account
when no spherical symmetry can be exploited. Just by limiting
our attention to the simple case of the elliptical cavity, from eq
9 one derives components of the local field tensor both smaller
and larger than the spherical limit. Thus, as the data of Table
2 report a single diagonal component of thef tensor and all the
considered molecules are embedded in complex cavities, what
we can only derive is that the specific shape of each solute acts
in different ways on the different components of the (hyper)-
polarizability tensors and that it is impossible to find a common
trend for all the analyzed cases.
These general observations, even if quite simple, have

important consequences; namely, they clearly show that the use
of a theoretical model which a priori defines a value of the local
field factor to be applied to all the molecules, irrespective of
their real nature, is at least suspicious and, in some cases, leads
to conclusions that can invalidate the whole comparison between
computed and experimental data.

The same considerations derived from results of Tables 1
and 2 can be applied to the second group of solutes (H2 C2 O
and H2 C3 O) for which the analytical reference is given by the
extension of the Onsager model to the elliptical cavity.
In Table 3 we report the theoretical values obtained by solving

eq 8 for the two molecules placed with their major axis along
z (a ) b ) 2.4 Å for both andc ) 3.637 Å for H2C2O and
4.279 Å for H2C3O) and applying eq 9 for the diagonal
components of thef tensor.
In Table 4 for each solute we report the diagonal components

of the polarizability tensor (in au) computed both by exploiting
the simplified cavity (in terms of the number of the spheres),
indicated below as “∼ellip.”, and the actual molecular cavity.
Here, even if the difference between the simplified and the

real cavities is smaller than the difference between those found
in the first group of solutes, where a single sphere has to replace
many interlocking spheres cavity (from 4 spheres in H2CO to
16 in C(CH3)3CO), the differences between corresponding
values in the first and the second column of Table 4 are of the
same order of those found in Table 1 (i.e.,∼10% for the largest
r component). This result, once again, shows the fundamental
importance of the use of a cavity well modeled on the molecular
shape in the evaluation of this kind of properties. In Table 5
we report the local field factors of the same molecules and the
same conditions used in Table 4 as obtained from eq 23; for a
comparison with analytical values we recall that the Onsager
values are reported in Table 3.
Data in Table 5 give us information about the validity to shift

to the ellipsoid the considerations previously done for the
comparison spherical molecular cavities. The only evident
difference to be stressed is that the nonexact equality between
theoretical and computed values of the local field factors are
here also due to the imperfect elliptical shape of the simplified
cavity, in addition to the border effects, which are still present.
Anyway, these differences are so small that the comparison with
the hypothetical ellipse has to be considered reliable.
The results of Table 5, which show a general better agreement

between simplified-cavity- and molecular-cavity-derived values
with respect to those of Table 2, lead to a quite obvious

TABLE 2: Local Field Factors of the Various Solutes in
Water Obtained From Equations 23 and 24 of the Text by
Exploiting a Spherical- and a Molecular-Shaped Cavity

from Raa from âaaa from γaaaa

cavity sphere mol cava sphere mol cav sphere mol cav

H2CO 1.470 1.342 1.474 1.334 1.530 1.339
CH3COH 1.458 1.405 1.387 1.394 1.115 1.375
CH3CH2COH 1.441 1.361 1.375 1.366 1.446 1.392
C(CH3 )3COH 1.486 1.550 1.487 1.618 1.477 1.548

amol cav) molecular cavity.

TABLE 3: Local Field Values Obtained by Solving
Equation 8 of the Text for the Two Molecules Placed in
Elliptical Cavities with the Major Axis along z

fxx) fyy fzz

H2C2O 1.612 1.295
H2C3O 1.658 1.240

TABLE 4: Diagonal Components of the Static Polarizability
Tensor (in au) of the Two Solutes in Watera

Rxx Ryy Rzz

cavity ∼ellip. mol cav ∼ellip. mol cav ∼ellip. mol cav

H2C2O 15.02 15.42 8.55 8.88 43.84 48.12
H2C3O 17.65 18.17 11.26 11.64 89.87 100.5

aComputed by exploiting the simplified cavity, below-indicated as
“∼ellip.”, and the molecular cavity (mol cav).

TABLE 5: Local Field Factors of the Two Solutes in Water

fxx fyy fzz

cavity ∼ellip. mol cav ∼ellip. mol cav ∼ellip. mol cav

H2C2O 1.593 1.527 1.620 1.644 1.277 1.261
H2C3O 1.633 1.579 1.660 1.684 1.216 1.198

aComputed through the eq 23 of the text in the case of a simplified
cavity, below indicated as “∼ellip.”, and of the molecular cavity (mol
cav).
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conclusion; namely, that for these two solutes, the errors one
makes in using theoretical (i.e., Onsager-model-derived) values
to fill the gap between computed and experimental data are
smaller than for the previous group of solutes, for which the
theoretical factors can differ from the computed ones even of
9% (see for example the first two column for H2CO). This
conclusion has been defined quite obvious as it can be easily
derived by geometrical considerations on the shape of the
molecules; for H2CxO compounds in fact, the molecular cavity
is clearly better approximated by an ellipse than that of the
RCOH compounds of the previous group by a single sphere.
Here, only the largest component (i.e., C(CH3)3COH) seems to
be well represented by the sphere, as it is easily predictable by
geometrical considerations on the relative values of the inter-
nuclear distances and the sphere radii.

4. Conclusions

We have reported an analysis of the relationship between
microscopicalγ(n) hyperpolarizability tensors and macroscopical
ø(n) susceptibility tensors which follows that done in many books
of nonlinear optics (see, e.g., Butcher and Cotter13) but also
opens the way of giving an operational definition of the proper
local field factors with the aid of ab initio QM calculations.
It is worth remarking that the present paper clearly shows

that the local field factors can be computed with a modest
computational effort and, being derived as ratios of two
quantities (namely the polarizability tensor components com-
puted in two different versions of the method, see eq 23)
obtained with the same approximations (e.g., the same basis
set), they are almost free from basis set-dependent errors (for
example, for H2CO the polarizability derived field factor goes
from 1.337, to 1.341, and to 1.342 passing from STO-3G,
3-21G, and 6-31G basis set). Hence, the procedure here
presented can be also used by experimentalists not wishing to
perform complex calculations.
A necessary further step in this kind of analysis will be

presented in a future communication, in which the more
interesting case, from the practical point of view, of frequency
dependent hyperpolarizabilities will also be treated. In the latter
case the problem is complicated by the presence of a further
term associated with the resulting frequencyωσ which has to
be included in eq 10, giving the general local field tensor; its
theoretical derivation is not as evident as that presented here
for the static terms.
Even if incomplete, as limited to the static problem only, the

present paper should suffice to show how proper QM methods
for the study of molecules in solution can be exploited to
recognize, and overcome a “trap”, as Bishop says in an

authoritative review,22 very common issue in this kind of
analyses where the comparisons between experimental and
computed data are so delicate and still in question.
For completeness’ sake we quote a very interesting still

unpublished paper by R. Wortmann and D.M. Bishop23 we had
the chance to read during the last revision of the present paper.
There an extension of Onsager’s reaction field to nonlinear-
optical experiments in condensed media is presented and is used
to derive effective polarizabilities and local field corrections
for the spherical and the ellipsoidal cases. We think that
Wortmann and Bishop article and the present one, if correctly
taken together, could give an almost complete elucidation on
the connection between experimentally derived molecular
(hyper)polarizabilities and the results of quantum-chemical
calculations.
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(12) Böttcher, C.Theory of Electric Polarization; Elsevier: Amsterdam,

1973.
(13) Butcher, P. N.; Cotter, D.The Elements of Nonlinear Optics;

Cambridge University Press: Cambridge, 1990.
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