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We present a simple computational method to connect the comltteiditio values of static dipole
polarizabilities and hyperpolarizabilities of molecules in solution with their experimental counterparts. The
connection is done in terms of local field factors. We show that formulas used by experimentalists are not
adequate, and that they can be replaced by a reformulation of the quantum-mechanical codes for the calculation
of (hyper)polarizabilities in solution by using a realistic description of the solvent reaction field (i.e., a cavity
with the proper molecular shape). This reformulation leads to an additional set of hyperpolarizability values
which take into account local modifications to the external static field. This second set of values has a direct
relation with the macroscopic susceptibility tensors and, when compared to that derived from standard
calculations, allows one to evaluate realistic local field factors.

1. Introduction

The large amount of literature on the ab initio calculation of

static dipole polarizability and hyperpolarizabilities of molecules
is mainly based on procedures applied to the evaluation of the

response functions of the single molecule when subjected to an

external static electric field in the limit of a weak polarization.
In the latter approximation, the dipolar interaction with the
radiation field can be described as an expansion on the externa
electric field components. There are two equivalent definitions,
based either on the Stark energy or on the dipole moment, which
is the negative derivative of the energy with respect to the field.
In the following we shall adopt the latter one.

Still within this assumption, in the literature one can find
different conventions used to define hyperpolarizabilities, mak-
ing it difficult to compare calculated and experimental values
or experimental values obtained using different techniques; a
very clear analysis of these practical aspects can be found in
paper by Willetts et al. Generally, the two most used
conventions are those based on a perturbation series expansio
of the induced dipole moment or on the parallel Taylor series
expansion:
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wherei® is the molecular permanent dipole apt) are the
microscopic (hyper)polarizability tensors at the various orders;
in eq 2 we have preferred to make explicit the contracted matrix
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formalism of eq 1 in terms of the Cartesian components c,
The relation between the two sets of coefficients is
immediate: the hyperpolarizabilities defined in the two conven-
tions are simply related by factors ail).

The coefficienty® (more often indicated a) is the dipole
polarizability tensor of the molecule and is related to the second
derivative of the energy and first derivative of the dipole moment
Wth respect to the fieldE. The polarizability term describes
he linear interaction with the field and accounts for linear
absorption and refraction behavior of the molecule. The
coefficientsy® andy® (more often indicated g8 andy), being
third- and fourth-rank tensors, respectively, are called first and
second hyperpolarizabilities and constitute the molecular origin
of the nonlinear interactions.

What was reported until now regards microscopic molecular
properties in vacuo; anyway, in the last few years there has
been a remarkable progress in ab initio calculations of the same
properties in solutioA~® The latter can be still defined in terms
of an expansion of the dipolar moment (or of the free energy
n ) . . ) X
of the molecule in solution) with respect to a uniform field
exactly in the same way as in vacuo (see egs 1 and 2). The
elaboration of methods able to compute microscopic (hyper)-
polarizabilities in solution has led to a more reliable comparison
with respect to the experimental measurements usually per-
formed on macroscopic samples (i.e., condensed phases).
Actually, these data give information on the corresponding
susceptibility tensorg®™ defined as the expansion coefficient
of the polarizationP in terms of the macroscopic uniform
external fieldE:

[= =x(1)E + 4@ EE + ... 3)
Usually, the macroscopic polarizaticﬁhis found by summing
over the dipole moments per unit volume, where the latter are
calculated with the aid of the expansions 1 or 2; this clearly
leads to an erroneous valuation as, wiidles defined in terms

of the external macroscopic field, each molecular dipole moment
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depends on the components of the local field acting on the single In order to derive more refined considerations, which will
molecule. Clearly, in rarefied media such as gases, the be important in the following analysis, further details are here
differences between the two fields are so small to be safely required.
neglected. On the contrary, the corrections to be taken into The Onsager equation (eq 6) is derived in the case of a polar
account in the case of molecules in condensed matter are byliquid with molecules of spherical shape; in this framework the
far larger, and they may have a significant effect on the global effect of the external field can be seen as a sum of two
comparison of experimentally determined coefficients with those contributions: the first due to the electronic polarization and
obtained from microscopic theories. In order to extract the the second due to the orientation of the permanent dipole. Thus
expressions for the macroscopic susceptibilities from those of if one wants to derive the proper correction factor to be applied
the microscopic hyperpolarizabilities, or vice versa, the relation to quantities calculated through solvation models which already
between local and macroscopic fields must be defined. In take into account the electronic polarization effects of the solvent
determining the local field one must, in general, take into molecules (and this is the case of the method exploited in the
account the depolarizing field acting on any particular molecule present paper), the model described above has to be partially
due to the influence of the surrounding molecules. changed. In this framework, the local field correction has to
The local field problem, even for a dielectric with an idealized be evaluated by considering the field inside the empty spherical
linear response, is quite difficult. It has received the attention cavity when subject to a homogeneous external field (often this
of the theoreticians over many decades, although this has yieldeccontribution is called the “cavity field” and it can also be defined
practical results in only a few simple casésBefore sum- as the reaction field induced by a nonpolarizable dipole at the
marizing them shortly, we recall that in the already introduced center of the sphere). In this case, eq 6 reduces to
dipole approximation (i.e., the molecules are assumed to interact

through the dipolar field of the induced dipole) the field acting P = 3e @)
locally at the site of the single molecule can be written as O 2+1
Eloc =fE (4) The same model can be easily generalized to a molecule with

an ellipsoidal shap® By choosing a Cartesian coordinate
system with its axes in the direction of the principal axes 2
2b, and Z of the ellipsoid and defining a diagonal tensbr
rWith components:

wheref is a 3 x 3 tensor whose components are known as
“local-field factors”.
The classical approach to the problem was established ove

80 years ago by Lorenff. He showed that for atoms or o
. i _abc ds .

nonpolar molecules with well-localized bound electrons the local A= 2 Jo ol 20 (a=a,b,c) (8)
field tensor may be replaced by a scalar quartit{i.e., (s+ )R

R L o4 andR = (s + ad(s + bd(s + ¢?), we can express the local

E..=fE= 3 E (5) field factor express by a diagonal tensor as follows:

-1 -1

wheree is the dielectric constant of the medium). fg' =|1- QA 9

The validity of this approach rests on the hypothesis that the
polarization within the dense medium is uniform; it is found
that the value obtained depends, not on the size of the cavity
embedding the molecule in the dielectric, but on its shape; the
case considered by Lorentz is limited to the spherical symmetry.

So far in this discussion of local fields we have considered
only induced dipoles; however, external fields, especially static
fields, can also orient molecules with permanent electric-dipole
moments. A refinement to the Lorentz model, taking into

When the ellipsoid degenerates into a sphere, we havé =
c and therefore all components, have the valué/s and the
tensor of eq 9 reduces to the sca@rof eq 7.

Having thus described the two main theoretical approaches
used to solve the local-yield problem, we may go back to the
connection between microscopic and macroscopic formulas. As
a preliminary step, it is compulsory to define the assumed
convention. In the present work we have exploited the

account the o;(fntatlonal reactive forces among molecules, ISperturbation series expansion (eq 3) to define the polarization
due to Onsager: These forces can be represented as reaction in the experimental measurements, while the theoretical calcula-

fields. The reaction field acting on a molecule depends on the yjong gescribed in detail in the following sections, are based
Q|pole of t_he m(_)lecule itself and therefore cannot co_ntrlbute 10 ona Taylor series expansion of the induced dipole moment (eq
its own orientation. Onsager showed that the local-field tensor 2): by adopting this convention the comparison between

‘é";‘it(;‘heasig?gs in eq 4 can be approximated, for a polar liquid, 1eaqrements and calculation is defined by the following recipe:

L2

N
27 =—T1fer® (10)
o o nt T
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(6)

whereN is the number of target molecules per unit volume and
wheree® denotes a value of the dielectric constant obtained by y™ is the related microscopic hyperpolarizability tensors at the
extrapolating the results of electrical measurements to high various orders. In the case of a static external field, the product
frequencies. reduces tan static local field tensors.

Both egs 5 and 6 are the usual corrections exploited to relate As already stressed, the definition of the proper local field
gas-phase computations and solution-phase measurements; inorrection is a difficult one, and at least for a general shaped
particular for static (or dc) electric field the local field factor is molecule it has not been analytically resolved; however, in most
often given by the Onsager expression. of the papers focussed on the study of electric response functions
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of molecules in solution use is made of approximate analogs matricesj, y, and X(P) collect the one- and two-electron

of the relations 10, in which the tensdfsare reduced to scalar  integrals to be added when the interactions with the polarized
quantities and replaced by the Lorentz or Onsager model-deriveddielectric medium are explicitly taken into account within the
factors despite the lack of spherical symmetry in the shape of PCM framework. More details on these matrices can be found
the target molecule. As the related correction factors are of elsewheré®

not negligible entity (suffice it to say that for water as solvent  Recently a PCM implementation allowing the computation
the Onsager factdg’ of eq 7 is about 1.5), in some cases this of (hyper)polarizabilities both in the statiand frequency
procedure can lead to completely wrong comparisons with dependefiicases has been done; in this framework, use is made
experimental data. of the coupled perturbed Hartre€ock (CPHF) and time-

In the next section we present a numerical procedure which dependent coupled Hartre€ock (TDCHF) formulations, re-
allows the direct calculation of the static local field tensors for spectively?®2° The formal aspects of the implementation can
any kind of molecule with the aid of QM calculations performed be found in the already quoted source papérstere it is
with the polarizable continuum model (PC¥1)16 in which a sufficient to recall that, when an external static figlgs applied,
cavity modelled on the real shape of the molecule is exploited. a further monoelectronic term has to be introduced in the Fock

operator of eq 13:
2. Method

In the PCM method, the electrostatic problem of the evalu-
ation of the interaction energy between solute and solvent,
ing an apparent charge distributiorspread on the cavity surface  of the dipole moment operator.

(ASC approximation}> In the computational practice this By expandingF, C, ¢, andP in terms of the external electric
continuous distribution is discretized by point charbg$, each  field components one gets expansions as a function of the
associated with a small portion (tessera) of the cavity surface, magnitude and direction of the field; then substituting the latter

we report a general matrix formulation which applies to all the on poth sides leads to various CPHF equations in different
different versions of the PCM method now in use (namely, the orders; for example, for the first order one obtains:

standard one presented in ref 16 but also a very recent one,

h=h+SmE +Y +v) (14)
a

called IEF, whose first presentation can be found in ref 17. Here EacO 4+ E9%c? = S0 4+ S0 (15)
it is worth stressing that a complete generalization with respect

to the still limited version presented in this source paper has with:

already been obtained, see ref 18 for details). In this general

framework the expression to be used is F=m,+ G(P? (16)

q=30=-30"p" (11)
HereX is a diagonal square matrix with elements given by the
areas of the surface tesserae pMda column vector depending

on the solute charge distributigny. O is a nonsymmetric

square matrix with dimension equal to the number of tesserae,
Q/vheren + 1 is the rank of the tensor argj the Cartesian

whose elements depend on geometrical cavity parameters an
on the dielectric constant; in a quite rough way we can say that

it takes into account the effects that the response (both in terms

of the reaction electrostatic field and the reaction potential) of
the solvent induces on itself.
The procedure for the calculation of solute energy and

wavefunction with the PCM method has been reported in several

papers, and we skip here all the details. Suffice it to say that,
in order to get solvation quantities, one has to resort to a direct
minimization of the functional of the free ener@yof the whole
solute-solvent system. For a closed-shell solute, described by
an SCF wave function with orbitals expanded over a finite basis
set, the variational conditionG = 0 leads to the following
equation:

FC =SCe (12)

where

F=h+"(+y)+GP) +XP)=h+GP) (13)

here the tilde stresses that the related matrices contain terms

accounting for the presence of the solvent field.

The matricesh and G(P) collect the usual one- and two-
electron integrals over the basis set used foru#heuumSCF
calculation, whileP is the one-electron density matrix; the

It is immediate to see that from eq 15 and from the higher order
analogs, one can derive the density matrix derivatives and hence
the various (hyper)polarizabilities tensor components by

(n)

Va@g, e Bgg = —Tr[malpaz, o anﬂ]

(17)

coordinates specifying its components.

The procedure briefly described above does not take into
account the differences between the macroscopic external field
and the local one really acting on the molecule; anyway the
way to be followed to go beyond this first approximation is
quite easy and physically well understandable.

Let us consider an empty cavity with shape adapted to the
hypothetical molecular solute to be studied immersed in a
continuum dielectric with permittivitye, and switch on an
external uniform fieldE®. As already said, the immediate
effects of this field are to induce a polarization of the solvent
molecules so that to produce a reaction field inside the cavity.
In the ASC framework exploited by PCM, this field is easily
described in terms of an apparent surface chasje (or
equivalently of a set of point charggg™} placed on the
previously defined surface tesserae), and simple electrostatic
considerations of the same type of those leading to eq 11 yield
to the following equation:
qex= —ZD_lEneX (18)
where EZ* is the matrix collecting the components of the
external field perpendicular to the cavity surface, computed at
each tessera The matrixD, tightly related to the gener&®
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matrix of eq 11, collects the effects of the reaction field the TABLE 1. Diagonal Values of Static Polarizability and

induced charges produce on themselves. Hyperpolarizability Tensors Corresponding to the Cartesian
When the molecular solute is put inside the cavity the total SOmPonenta® with the Largest Value of Polarizability

solvent effects to be considered in order to derive its response Olaa Baaa Vaaaa

functions can be thus represented by a set of effective point  cavity sphere mol cdv sphere molcav sphere mol cav

charges{qieﬁ} given by the sum of 'Fwo qontributions, namely H,CO 2304 2162 9786 7696 20113 200.32

the “solute field” and the “external field” induced chargés;} CH3COH 34.73 3335 140.90 133.62 62150 717.84

(see eq 11) andq®} (see eq 18), respectively. This is CHCHCOH 49.10 4547 7540 89.92 1839.65 1334.94
reflected in the definition of the monoelectronic mathixf eq C(CH;)sCOH 60.49 60.73 146.30 145.29 3980.89 4154.57
14 in which a further termh®%, has to be added: aTensors in au.’ Mol cav = molecular-shaped cavity.

h®="% mE (19)  COH, CH; CH, COH, C(CH; )3 COH, CH C, O, and CH Cs
a 0) in water (¢=78.5) at 298 K.

All the calculations have been performed using the already
guoted IEF version of the PCM methdd®and a 6-31G basis
set. Clearly, this quite limited basis set gives a very poor
description of the various response functions, as they are

where the fieldE® is now the external macroscopic one. The
matrix M, is derived from the interaction energy between the
“external field” induced charges and the solute electronic charge:

ex quantities which require extended basis sets including polariza-

M= — Viaqi (20) tion and diffuse functions. However, as the scope of the present
a™ Z JESX paper is not the evaluation of the best (hyper)polarizability
a values but the analysis of relative quantities obtained as ratios

of values computed at the same level of approximation, the
absolute quality of the calculation is at least a second-order
effect, not important in the analysis below.

Within the PCM framework, the cavity in the dielectric
medium which contains the molecular solute is defined in terms
of interlocking spheres centered on the solute nuclei, with radii
R equal to 1.2 times the corresponding van der Waakslues
R:™: namely, for our solutes we hawy = 1.44 A Rc = 2.04
A, andRo = 1.80 A. Moreover, in order to test the reliability
of the method through a direct comparison with analytical
1) formulas of the local field factors, we have repeated the

calculations with simplified cavities: for the first group of
At zero order it disappears, being the related equation obtainedSOIUtes (HCO’.CPBCO.H' CHCH, COH, and C(CH)sCOH)
we have exploited a single sphere centered on the mass center

in the limit of zero external field. By applying the same . - .
procedures indicated above one derives the new set of densityOf the molecule and with radius such that to give the same

) oo - - volume of the molecular cavity, while for G&,0 a three-
matrix derivativesP%2(h®) from which new (hyper)polariz- . . .
abilities are easily computed: sphere cavity with the spheres of radius 2.4 A centered on the

carbon and the oxygen atoms, and forCkD, the analog four-
sphere cavity. The latter two cavities are quite good representa-
tions of an elliptical cavity for which the expression 9 can be
N o : . applied.

Within this framework it is immediate to derive the local effects In Table 1 we report, for the first group of molecules, the
acting on the_ macroscopic external field and the related local gjagonal values of each static (hyper)polarizability tensor (in
field tensorf; namely, it is sufficient to consider the ratio 5,y corresponding to the Cartesian component with the largest
between the various component of the polarizability tensors \51ye of the polarizability tensor as obtained by exploiting a
obtained by solving the first CPHF equations in which the gpherical and a molecular shaped cavity, respectively.

further constant termh®* is, or is not, explicitly introduced in The results of Table 1 are here reported not as reliable

the Fock matrix, respectively, absolute values, but as a clear demonstration of the importance
e of the choice of the proper cavity shape. Numerical data in
— aap(®) (23) fact show that the exploitation of a cavity well modelled on the
ap shape of the molecule leads to important differences with respect
to the use of a simplified cavity; namely, the largest variations
The relation 23 can be easily extended to higher order are of the order of 10% in, of 27% inf, and of 37% iny. In
hyperpolarizability tensors, at least for the diagonal terms; Table 2 we report the local field factors of the same molecules

where the matri¥ collects the potential integrals over the basis
set computed at each tesséera

As we already said, in the CPHF formalism, the various
Hartree-Fock equations to be solved to get the density matrix
derivatives (and then the hyperpolarizability tensor via eq 22)
are obtained by considering the derivatives of eq 12 with respect
to the field. Itis easy to see that the new teifiy being linear
in the field, explicitly acts at the first order only, as a constant
contribution to be inserted in eq 21; namely,

F?=m, + M, + G[P*(h™)]

Vit 2 (0%) = ~THM P22 (22)

fab

namely, we have and the same conditions used in Table 1 as obtained from egs
23 and 24. For a comparison with analytical values we recall
R (1) that the Onsager formula of eq 7 givigs= 1.490 fore = 78.5.
(faa.a)” = T @ From the data in Table 2 several interesting features can be
aa.a derived. First, it is evident that also in the case of spherical

cavities the computed values deviate from the theoretical one

(i.e.,f = 1.490). This behavior can be easily explained if one
The results here reported and analyzed regard static (hyper)-considers that the spherical cavity reproducing the molecular

polarizabilitiesa, 8, andy of various molecules (HCO, CH; volume can induce important border effects on those atoms

3. Numerical Results and Discussion
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TABLE 2: Local Field Factors of the Various Solutes in TABLE 3: Local Field Values Obtained by Solving
Water Obtained From Equations 23 and 24 of the Text by Equation 8 of the Text for the Two Molecules Placed in
Exploiting a Spherical- and a Molecular-Shaped Cavity Elliptical Cavities with the Major Axis along z
from aaa from Baaa from yaaaa fux= fyy f.2
cavity sphere mol cdv sphere mol cav sphere mol cav H.C,O 1.612 1.295
H.CO 1470 1342 1474 1334 1530 1.339 H2C0 1.658 1.240
CH;COH 1.458 1405 1.387 1.394 1.115 1.375

TABLE 4: Diagonal Components of the Static Polarizability

CHiCH,COH 1441 1361 1375 1366 1446 1.392 Tensor (in au) of the Two Solutes in Watef

C(CH;)sCOH 1.486 1550 1.487 1.618 1.477 1548

amol cav= molecular cavity.

Olxx Qyy Ozz

) ] ~cavity ~ellip. molcav ~ellp. molcav ~ellip. molcav
which are very close to the surface where the local flgld IS 0.0 1502 1542 8.55 888 4384 1812
strongly nonuniform; the bigger these effects the larger is the n,c.o 1765 1817 11.26 11.64 89.87 1005
difference with respect to the theoretical value obtained sup-
posing a completely uniform field inside the whole cavity. These .
discrepancies are easily reduced by enlarging the sphere; for
the specific molecules listed in Table 2 it is sufficient to double TABLE 5: Local Field Factors of the Two Solutes in Water
the radius derived from the molecular volume to obtain values f £ f

. . XX vy zz
exactly equivalent to the theoretical one. The same border ) - - -
effects are also reflected in the differences among values @ity ~ellip. molcav ~ellip. molcav ~eliip. molcav
obtained from the ratio of different order hyperpolarizabilites H-C:O 1.593 ~ 1.527 1620 1.644 1277 1261
(see eq 24); better showing this point is worth a brief digression. H2C:0  1.633  1.579  1.660  1.684  1.216  1.198

As the theoretical framework described in the previous section 2 Computed through the eq 23 of the text in the case of a simplified
shows, the local field effects explicitly act at the first CPHF cavity, below indicated as~ellip.”, and of the molecular cavity (mol
order only (through the presence 6f n the first derivative of cav).
the Fock matrix) but indirectly they change the results at all
the higher orders. Thus, being the solutions of the CPHF The same considerations derived from results of Tables 1
equations generally not exact, the magnitude of the inherentand 2 can be applied to the second group of solutesCd-D
error is related to the order, the effects due to an eventual @nd H Cs O) for which the analytical reference is given by the
nonuniform shape of the local field will be differently reflected ~extension of the Onsager model to the elliptical cavity.
on the resultingx, 3, or y values, and indirectly on the local In Table 3 we report the theoretical values obtained by solving
field factors derived by them. Also, small differences in the eq 8 for the two molecules placed with their major axis along
values of the factors computed from different hyperpolarizability Z (@ = b = 2.4 A for both andc = 3.637 A for HC,0 and
ratios indicate small border effects. An evident proof of this 4.279 A for HCs0) and applying eq 9 for the diagonal
statement is given by C(GHs COH; here both the deviations ~components of thé tensor.
of the computed factor with respect to the theoretical value and  In Table 4 for each solute we report the diagonal components
the differences among the three local field factors are almost of the polarizability tensor (in au) computed both by exploiting
negligible, and as a matter of fact a sufficiently uniform behavior the simplified cavity (in terms of the number of the spheres),
of the external field inside the cavity has been numerically indicated below as-ellip.”, and the actual molecular cavity.
found. Here, even if the difference between the simplified and the

Now that we have stressed this technical but not minor aspect,real cavities is smaller than the difference between those found
we consider the effects of a molecular cavity with general shape. in the first group of solutes, where a single sphere has to replace

First it is worth noting that, while in the case of the sphere many interlocking spheres cavity (from 4 spheres #€B to
the deviations of the computed values from the theory are always16 in C(CH)sCO), the differences between corresponding
in the direction of a smaller local field with respect to the values in the first and the second column of Table 4 are of the
Onsager value, here the effects can go in both the directions.same order of those found in Table 1 (i:.210% for the largest
This more complex behavior is obviously related to the tensorial a component). This result, once again, shows the fundamental
nature of the local field factors to be always taken into account importance of the use of a cavity well modeled on the molecular
when no spherical symmetry can be exploited. Just by limiting shape in the evaluation of this kind of properties. In Table 5
our attention to the simple case of the elliptical cavity, from eq we report the local field factors of the same molecules and the
9 one derives components of the local field tensor both smaller same conditions used in Table 4 as obtained from eq 23; for a
and larger than the spherical limit. Thus, as the data of Table comparison with analytical values we recall that the Onsager
2 report a single diagonal component of ftensor and all the ~ values are reported in Table 3.
considered molecules are embedded in complex cavities, what Data in Table 5 give us information about the validity to shift
we can only derive is that the specific shape of each solute actsto the ellipsoid the considerations previously done for the
in different ways on the different components of the (hyper)- comparison spherical molecular cavities. The only evident
polarizability tensors and that it is impossible to find a common difference to be stressed is that the nonexact equality between
trend for all the analyzed cases. theoretical and computed values of the local field factors are

These general observations, even if quite simple, have here also due to the imperfect elliptical shape of the simplified
important consequences; namely, they clearly show that the usecavity, in addition to the border effects, which are still present.
of a theoretical model which a priori defines a value of the local Anyway, these differences are so small that the comparison with
field factor to be applied to all the molecules, irrespective of the hypothetical ellipse has to be considered reliable.
their real nature, is at least suspicious and, in some cases, leads The results of Table 5, which show a general better agreement
to conclusions that can invalidate the whole comparison betweenbetween simplified-cavity- and molecular-cavity-derived values
computed and experimental data. with respect to those of Table 2, lead to a quite obvious

a Computed by exploiting the simplified cavity, below-indicated as
~ellip.”, and the molecular cavity (mol cav).
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conclusion; namely, that for these two solutes, the errors one authoritative review2 very common issue in this kind of
makes in using theoretical (i.e., Onsager-model-derived) valuesanalyses where the comparisons between experimental and
to fill the gap between computed and experimental data are computed data are so delicate and still in question.

smaller than for the previous group of solutes, for which the  For completeness’ sake we quote a very interesting still
theoretical factors can differ from the computed ones even of unpublished paper by R. Wortmann and D.M. Bis¥ape had

9% (see for example the first two column forEO). This the chance to read during the last revision of the present paper.
conclusion has been defined quite obvious as it can be easilyThere an extension of Onsager’s reaction field to nonlinear-
derived by geometrical considerations on the shape of the optical experiments in condensed media is presented and is used
molecules; for HCO compounds in fact, the molecular cavity to derive effective polarizabilities and local field corrections

is clearly better approximated by an ellipse than that of the for the spherical and the ellipsoidal cases. We think that
RCOH compounds of the previous group by a single sphere. Wortmann and Bishop article and the present one, if correctly

Here, only the largest component (i.e., C@HEOH) seems to

taken together, could give an almost complete elucidation on

be well represented by the sphere, as it is easily predictable bythe connection between experimentally derived molecular
geometrical considerations on the relative values of the inter- (hyper)polarizabilities and the results of gquantum-chemical

nuclear distances and the sphere radii.

4. Conclusions

We have reported an analysis of the relationship between
microscopicaly™ hyperpolarizability tensors and macroscopical

calculations.
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